Sat, Oct-19 Sun, Oct-20 Mon, Oct-21 NO SCHOOL Tue, Oct-22 Mouse Trap Car Prelim Wed, Oct-23 Mouse Trap Car Prelim Thu, Oct-24 Mouse Trap Car Prelim Fri, Oct-25 Mouse Trap Car Finals Sat, Oct-26 Sun, Oct-27
 90% LED BOARD 2020 2019 1.1 Measurement 86 1.2 Math Foundations 73 1.3 Vector Addition 90 2.1 Uniform Acceleration 0 2.2 Graphing Motion 0 2.3 Newton's Laws 0 3.1 Force Body Diagrams 0 3.2 Parallel Forces 0 4.1 Projectile Motion 0 4.2 Circular Motion 0 4.3 Rotational Motion 0 5.1 Work Eff./Power 0 5.2 Energy Conservation 0 5.3 Momentum 0 6.1 Wave Mechanics 0 7.1 Sound Characteristics 0 7.2 Sound Intensity 0 7.3 Doppler Effect 0 7.4 Strings & Tubes 0 8.1 Photoelectric Effect 0 9.1 Fluid Dynamics 0 Current Class Leader: TIE

Mastered each JEDI Trial!
Noah Graalfs
Alec Knepper
Peter Schumacher
Taylor Tiffin
Lukas Zerajic
Board Battles Theme Song!
© Peter Weihs & Colby Knight 2013
Bookmark this website on the home screen of your mobile device. Don't know how? Watch here!

# Inquiry: Center of Gravity

## Procedure for Part 1:

• Mass a meter stick on a balance.

• Locate the COG of the stick by balancing it on a narrow support.

• Support the meter stick at some location OTHER than the COG and add a single clip and mass to bring the stick into balance.

• In your notebook, draw the FBD and calculate the mass required at the COG to produce rotational equilibrium and compare this mass with the measured mass of the stick. Calculate the % error.

## Procedure for Part 2:

• Support the meter stick at the 0.20 m mark and hang a 1.0 kg mass at the 0.01m mark.

• At the 0.1m mark hang a 0.5 kg mass, at the 0.4 m mark hang a 0.1 kg mass and at the 0.7 m mark hang a 0.2 kg mass.

• In your notebook, draw the FBD and compute where a 0.1 kg mass and clip must be hung to produce rotational equilibrium. Compute a % error.

## Inquiry Questions:

1. A 20 m long rod with an uneven distribution of mass is being supported on both ends. The upward force on one end is 800 N while the other one is 600 N. Where is the COG? (show work)