"ut omnes discant quod erat demonstrandum"

Sat, Oct-19
Sun, Oct-20
Mon, Oct-21 NO SCHOOL
Tue, Oct-22 Mouse Trap Car Prelim
Wed, Oct-23 Mouse Trap Car Prelim
Thu, Oct-24 Mouse Trap Car Prelim
Fri, Oct-25 Mouse Trap Car Finals
Sat, Oct-26
Sun, Oct-27
LED BOARD 2020 2019
1.1 Measurement 86
1.2 Math Foundations 73
1.3 Vector Addition 90
2.1 Uniform Acceleration 0
2.2 Graphing Motion 0
2.3 Newton's Laws 0
3.1 Force Body Diagrams 0
3.2 Parallel Forces 0
4.1 Projectile Motion 0
4.2 Circular Motion 0
4.3 Rotational Motion 0
5.1 Work Eff./Power 0
5.2 Energy Conservation 0
5.3 Momentum 0
6.1 Wave Mechanics 0
7.1 Sound Characteristics 0
7.2 Sound Intensity 0
7.3 Doppler Effect 0
7.4 Strings & Tubes 0
8.1 Photoelectric Effect 0
9.1 Fluid Dynamics 0
Current Class Leader: TIE

Mastered each JEDI Trial!
Noah Graalfs
Alec Knepper
Peter Schumacher
Taylor Tiffin
Lukas Zerajic
Board Battles Theme Song!
© Peter Weihs & Colby Knight 2013
Bookmark this website on the home screen of your mobile device. Don't know how? Watch here!

Inquiry: Springs

Purpose: To examine Simple Harmonic Motion and Conservation of Energy of Springs.


  1. Using Spring 1 and the known masses record some data and then graph the data in Excel so that the slope of the best fit line will give you the spring constant [k] in N/m. Click Show Help to see how to manipulate this applet.

  2. Use Spring 1 and its calculated k value to determine the three unknown masses in grams.

  3. Use Spring 1, its calculated k value and the 100 g mass to determine the gravity on Jupiter, the moon and Planet X.

  4. Use Spring 1 again and slide friction to none. Put on a 250 gram mass on the uncompressed spring and drop it. Measure the distance from the starting line to the line of lowest descent using the moveable ruler. (Use the end of the spring as the measuring point.) Calculate the amount of Total Energy available at the beginning.

  5. Knowing that GPE at the beginning should equal EPE at the bottom, recalculate the value for the elasticity constant (k) of the spring.

  6. Knowing that TE = GPE + EPE + KE make a data table of GPE, EPE and KE for about 10 equal increments during the fall. (Take the total height and divide by 10 to get the increment) You can calculate GPE and EPE but KE will be whatever is left over. Make a final column in your table that shows the velocity of the mass.

  7. Where is the KE at a maximum and what is the velocity at this point?

  8. Click on the show energy graph. Examine this graph with and without friction. What is the difference?

Inquiry Questions:

  • Print your spreadsheet and insert NEATLY into your notebook.

  • How much energy is used when 10.0 Newtons of force stretches a spring 20.0 cm?